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ABSTRACT 

We place constraints on the abundance of quasi-stable particles with hadronic 

decay modes using the upper bounds on primordially produced 4He and the sum 

of D and 3He abundances. The results are presented as a function of particle 

lifetime (ranging between 10-l - lo4 set), particle mass and hadronic branching 

ratio. We apply our results to the cases of gravitinos, photinos in i-parity 

violating theories and mirror quarks. We also discuss another mechanism for 

hadron injection, cold dark matter annihilation. 
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1. Introduction 

The agreement between big bang nucleosynthesis (BBN) calculations and 

observations of light element abundances provides a strong argument in favor of 

the standard big bang cosmology.’ The fact that agreement is attained at all 

is remarkable, even more so because small deviations of the input parameters 

ruin the good predictions of the standard cosmology. On this basis,’ one may 

conclude that the number of light neutrino species, NV, is less than 5 and that 

the contribution of baryons to the closure density of the universe, ~,zJ, is less 

than 0.2. These two statements have profound effects on our view of particle 

physics and cosmology, particularly a prejudice for closure density fl = 1, and 

ideas about dark matter.3 Considerable efforts have been made to see if these 

conclusions can be modified by additional hypotheses. Consequently, various au- 

thors have considered inhomogeneities in baryon number,4 neutrino degeneracy,’ 

neutrino masses,’ entropy production,’ photofission of light nuclei, 8-lo,12 etc., 

as mechanisms for modifying standard BBN. 

Instead of trying to alter some of the fundamental hypotheses in BBN cal- 

culations, one may use the consistency of BBN with observations &s a constraint 

on variations of standard cosmology or standard particle physics. This is the 

approach we take. Our objective in this work is to assess the effects on BBN 

of injecting strongly interacting particles during nucleosynthesis. We place con- 

straints on the mass, lifetime and primordial abundance of any hypothetical 

unstable particles, denoted by X, that decay into quarks or gluons. Examples of 

decaying particles are gravitinos that decay into gluon-gluino,““’ photinos in 

theories where i-parity is violated1”r3 and quasi-stable quarks such as those 
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occurring in 0(18) models. l4 Some of the effects considered here have been dis- 

cussed by Dominguez-Tenreiro” for the case of gravitino decay and more gener- 

ically by Dominguez-Tenreiro and Yepes. l5 We also discuss cosmological models 

dominated by cold dark matter” particles of a few GeV mass where dark matter 

annihilations produce hadrons. 

The effects we are considering are easy to describe qualitatively. Suppose a 

100 GeV X particle decays producing some energetic quarks or gluons. Each 

quark or gluon results in a jet of strongly interacting particles, i.e. mesons, 

baryons and anti-baryons. These particles may decay, but the longer lived species 

have a chance to interact with the ambient protons and neutrons. When these 

interactions take place, there is a significant probability that the target nucleon 

will change isospin, i.e., p -+ n or vice versa. The calculated light element 

abundances depend on the neutron density. By requiring these abundances to 

remain within observational bounds, we can work backwards to derive a limit on 

how many X decays are allowed during the nucleosynthesis era. 

There are four temperature regimes, each manifesting different effects due to 

the ifiection of hadrons. When T 2 0.7 MeV, proton-neutron interconversion 

through weak interactions largely washes out the effects of hadronic conversion of 

protons and neutrons. The equilibrium ratio of neutrons to protons is preserved 

except for large hadronic injection rates at temperatures above 0.7 MeV. 

When weak charge exchange reactions “freeze out” at a temperature T, - 0.7 

MeV the fraction of baryons found in neutrons, zr,, is - 0.16. Due to neutron 

beta decay, zn decreases to - 0.12 by the time the “deuterium bottleneck” breaks 

at T - 0.08 MeV and nucleosynthesis of the light elements proceeds. The major 
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effect of injecting strongly interacting particles when 0.7 MeV 2~ T 2 0.08 MeV 

is to induce p + n reactions because there are more target protons than target 

neutrons. The extra neutrons produced in this way result in an enhanced helium 

abundance, Y. 

When T 5 0.08 MeV, the deuterium abundance first increases then decreases 

as the neutrons are processed into helium. Before T - 0.05 MeV, most neutrons 

end up in 4He. For T 2 0.05 MeV, there are no free neutrons left in the standard 

model of BBN. Furthermore, the deuterium (D) left over from nucleosynthesis is 

so dilute that it no longer burns into heavier isotopes via 3He and tritium (T). 

Strongly interacting particles injected at this time induce p -+ n reactions (and 

some destruction of ‘He) and result in free neutrons that bind into deuterium. 

Since the deuterium doesn’t burn the major effect here is to increase the deu- 

terium abundance. In addition, although it is less obvious, the free neutrons also 

have a significant effect on the ‘Li abundance. 

Finally, there is a fourth regime (2’ 5 3 keV) when the neutrons released by 

strong interactions decay before they can bind into deuterium. The major effect 

of injecting strongly interacting particles in this regime is due to the fractional 

probability for 4He to suffer induced fission into 3He, T, or D.11”2 Unless this 

fraction is very small, the over abundance of 3He, T, and D produced by the 

fission of ‘He is much more significant than the decrease in ‘He. 

At this stage we would like to clarify a few conceptual points. The first point 

pertains to charge symmetry. Although the injection spectrum and individual 

cross sections may be charge symmetric, the target medium definitely is not. 

As we have already remarked, the neutron fraction ranges from 0.5 - 0.12. A 
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net charge flow p + n is induced upon a charge symmetric, out of equilibrium, 

introduction of strongly interacting particles whenever z, < 0.5. Actually, the 

cross sections are not precisely charge symmetric due to mass differences within 

isospin multiplets. In fact, it is just this sort of mass difference (m, - na, ‘- 

1.3 MeV) that leads to the original asymmetry of the medium. We emphasize, 

however, that even with charge symmetric cross sections in the calculation, a net 

charge flow is induced. 

The second point regards the treatment of injected baryons and anti-baryons. 

We begin by supposing X decays with no net baryon number, e.g., the number 

of neutrons equals the number of antineutrons in the final state. Even though 

they are not physically bound together we can think of them being injected and 

interacting in pairs: (nii) + n -+ n.. . or (nfi) + p + n.. . . In this way we treat 

baryon anti-baryon pairs the same way we would very long-lived mesons, i.e., 

their only effect is to induce p * n interactions. On the other hand, when X 

carries baryon number, we modify the discussion to account for a net change in 

baryon number. 

Finally, we comment on interaction times versus decay times. It is clear that 

for baryon anti-baryon pairs, hadronic interaction times are short compared to 

decay times. For mesons, surprisingly, the two time scales are competitive. The 

baryon density is large enough at T - 1 MeV for meson-baryonstrong interaction 

rates to compete with meson decay rates, so the ‘He abundance is affected. In 

regard to interaction rates, the interactions of interest are exothermic, so the 

cross section times relative velocity is constant at low energies, rather than going 

to zero. However, by the time the universe cools to 0.1 MeV, the baryon density 
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is too low for mesons to make a significant change in light element abundances. 

We have sketched the effects of injecting hadrons during nucleosynthesis. The 

rest of this paper provides more details. In Section 2 we quickly review standard 

BBN and the observational limits on light element abundance. In Section 3 we 

describe how we modify standard BBN calculations to account for strongly inter- 

acting particles. This is where we give the cross sections, particle multiplicities, 

etc., that provide the details of our analysis. Section 4 contains the bulk of our 

results concerning injection due to decaying particles. Section 5 has a discus- 

sion of the injection of strongly interacting particles due to the annihilation of 

cold dark matter. Finally, Section 6 contains a summary of our results and a 

discussion of the uncertainties in our calculations. 



2. Standard big bang nucleosynthesis 

We briefly review the standard picture of big bang nucleosynthesis, with 

an eye towards how the standard results change upon injecting hadronic matter. 

First, we repeat the quantitative analysis of previous authors and give qualitative 

reasons for why the light element abundances behave as they do. This framework 

allows us to understand in a general way the detailed results to follow in Sections 

4 and 5. We state here our choices for observational limits on light element 

abundances. 

The standard model of BBN has been discussed extensively in the literature.” 

Using nuclear and electroweak interaction rates in a homogeneous and isotropic 

Universe, the dynamical evolution of nucleon and nuclear densities can be traced 

as a function of the temperature of the Universe. The parameters that enter into 

the calculation of the final abundances of light elements include the number of 

light neutrinos NV, the neutron half life rl,z and the baryon-to-photon number 

density ratio n. Throughout, we set NV to 3. We fix the neutron half life at 

the Particle Data Book” central value of rl/z = 10.4 min. The error quoted is 

of order 0.2 min. Traditionally, the elemental number densities are normalized 

by the number density of hydrogen, e.g., XD = n(D)/n(H) r[D/H], except for 

‘He which is normalized to the total msss density, Y = 4X.wc/(l + 4X.x.). 

Sometimes we show abundances normalized to entropy, yx E nx/s. To arrive 

at the final values of the light element abundances, the equations of nuclear and 

nucleon reaction kinetics are solved. In practice, the equations are numerically 

integrated. For our presentation here, we use the Wagoner computer code. 
19 

Fig. 1 shows the standard model results for (a)‘He, (b)3He and D and (c) 



‘Li, ss a function of baryon density. The qualitative features of these graphs are 

understood. The critical quantity is the time TV when the rate for deuterium 

formation exceeds that for deuterium photofission. This =deuterium bottleneck” 

breaks at a few hundred seconds. Before TV, essentially all baryons are in single 

nucleons, protons or neutrons; but as soon ss deuterium accumulates, the rest 

of the nuclear reactions quickly cook almost all neutrons into ‘He, the most 

tightly bound of the light elements. Nuclear burning is not completely efficient 

so residual numbers of other light elements account for a small fraction of the 

neutrons. 

From this argument, we see that the helium abundance is determined by 

the neutron abundance at the time the deuterium bottleneck breaks. That is, 

Y u 22, where 2, is the fraction of baryons in neutrons just before TV. For times 

between a few seconds and a few hundred seconds, the only weak interactions 

operative are neutron beta decays so z,, - e(-tD/r”). We can now understand why 

in Fig. 1, Y is fairly insensitive to n. The rate for photofission of D is controlled 

by the number density of photons with energy greater than the binding energy 

of D, E7 > ED = 2.2 MeV. For T < ED, the rate for photofission depends 

exponentially on the photon temperature T through the Boltsman factor e-ED/T. 

Increasing the baryon density and thus the formation rate of D requires a small 

logarithmic change to TV to increase the effective photon density. This in turn 

results in a logarithmic increase in z. and Y. 

Contrary to the 4He abundance, the other light element abundances show 

large variations with of r). Part of this variation is due to the choice of nor- 

malization. Because the abundances are measured realtive to hydrogen, for a 



constant element abundance, as n increases Xi - (l/n). However, the absolute 

abundances are not constant. For higher n, the neutron density drops sooner 

and faster. As a result, reactions involving neutrons turn off sooner at higher n. 

We briefly look at these two effects on D, T, 3He, and ‘Li. 

Immediately following the breaking of the deuterium bottleneck, there is a 

brief period of time where the fuel source for nucleosynthesis is neutrons. The 

neutron number drops exponentially and soon that fuel source is exhausted. 

There then ensues a stage wherein deuterium production has stopped and deu- 

terium is the consumable resource. For most of this period D is consumed by 

DD-t n3He, pT reactions. 

When the abundance of a species is determined by reactions with two particles 

of species a in the initial state, the final abundance yf is generally insensitive to 

the initial abundance. Rather yf - (z/C); where z = (m,/Ti), C cc a,,, is a 

constant proportional to the reaction cross section 20 and Ti is the temperature 

below which the production of the species a is unimportant. For a = D, this is 

when the neutron fuel is exhausted. 

If the initial values of Ti and 0, were independent of n then the absolute 

final abundance of D would be n independent and therefore XD - l/n. In fact, 

for higher values of q the neutron number drops faster so the initial time for 

DD burning to dominate occurs earlier. This implies a higher value of Ti which 

in turn implies a higher cross section because it is easier to overcome the DD 

Coulomb barrier. Both these increases result in decreasing the final value of z, 

so as a result XD falls faster than l/q. For very high values of q 2 10Vg, DD 
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reactions deplete D to the point where the dominant D reaction is Dp -+ y3He. 

When this happens D falls very quickly with n, ss increasing n increases the 

“optical depth” of the universe to deuterium. 

The tritium abundance is easily understood sa competition between the dom- 

inant formation (DD-+ pT) and destruction reactions (DT-+ n’He). This Sxes 

XT = (~DD~~T/~DT-+~~H~ )X0, or XT N 10-‘X~. The lifetime of T is 3.9. 10s 

set and T decays to 3He so the final abundance of 3He is slightly enhanced. 

3He - 

The 3He abundance is complicated by the reactions n3He-+ pT and Dp + 

q3He. Until zn s X0/10, the neutrons keep X~H~ from rising to trace the 

rise of XD. Later, during D burning, the neutrons produced in DD+ n3He 

may recombine with 3He. This reaction also suppresses X~H~ relative to XD. 

However, in the late stages of D burning, the neutrons may decay so that the 

3He produced remains. This provides for an increase in X~H~ as r) decreases. For 

high r] (low XD, so that DD burning is less important), X~H~ tends to a value 

(- 3 + 10m6) determined by the ratio of the Dp and D3He cross sections. 

The final value of XI& is actually the sum of the mass 7 nucleides ‘Li and ‘Be 

which eventually electron captures to form ‘Li. 7Li is primarily formed by T4He--t 

y’Li and destroyed by p7Li+2’He. Similarly, ‘Be is formed by 3He4He-t y’Be 

but is destroyed by n’Be+ p’Li. In low t) models neutrons remain abundant 

enough after the high Coulomb barrier of the 3He4He reaction turns off ‘Be 
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formation, so that most ‘Be is transformed into ‘Li. The Coulomb barrier for 

T’He is lower so the ‘Li abundance is determined by competing T’He and p’Li 

reactions. As a result, for q 5 3 ’ lo-lo, the ‘Li abundance traces the T and 

therefore the D abundances. For high 7, the neutrons disappear earlier and 

there is no way to get rid of the ‘Be. The direct ‘Li production still traces T and 

D and so drops with increasing r]. As a result XvLi is dominated by ‘Be which 

increases with q as neutrons are eliminated earlier. The combination of low and 

high 1) arguments leads to the well know minimum for XIG at r) E 3 . lo-lo. 

There are several reviews of the current status of observational studies of 

the light element abundances.a’zl We simply quote here the values used in the 

ensuing analysis. All of the limits appear as dashed lines in Figs. l(o - c). For 

the primordial abundance of ‘He, we take the conservative upper bound 

Y* 5 0.26. (2.la) 

This is equivalent to using a 5a uncertainty in the result of Kunth and Sargent,” 

YP = 0.245 f 0.003. Although our results are not sensitive to it, at one point in 

our analysis, we use a lower bound of Yr 2 0.22. 

Deuterium is processed by stars into 3He, so the primordial abundance is 

larger than the presently observed abundance: 

(xD)p 2 (x0)0 x lo-‘. (2.1b) 

According to the stellar combustion argument, an upper bound on the sum of 

primordially produced D and 3He is fairly model independent. A conservative 
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upper bound is 

(& + X8&, 5 lo-‘. (2.lc) 

Henceforth, we drop the subscript p and refer only to primordial abundances. 

The abundance of rLi observed in metal poor stars isz3 

XILi = (1.2 f 0.3) ’ lo-“, (2;ld) 

however, there is some debate as to whether or not this is indeed a measurement 

of the primordial ‘Li abundance or perhaps a consequence of galactic or stellar 

evolution. We do not use ‘Li to constrain decaying X particles, but we keep 

track of how their decay affects XrLi. 

The dashed lines indicating the limits for ‘He, 3He and D can be used in the 

conventional scenario to 6x the range of allowed values of n. The upper bound on 

XD + XSB~ puts n 2 3. lo-lo. The upper bound on Y requires q 2 2. lo-‘. By 

also considering the lower bound on XD, the maximum I] value can be lowered 

to 10mg. The range of q N (3 - 10) .10-l’ coincides with the range of estimates 

considered “conservative” by Yang et ol.’ 

Deviations from the standard BBN model may allow for a larger range of n. 

By introducing X particles decaying into hadrons, we find that the sum of the 

D and 3He abundances is never decreased from the standard model result for a 

given q. Therefore, we only consider u 2 3 * 10-l’. 
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3. Changes to nucleosynthesis due to injected hadrons 

In this section we itemize the changes to the equations governing nucleosyn- 

thesis, due to the injection of hadrons. For the most part this involves calculating 

the rate at which p CI n transitions are induced by X decays. In cases where 

X carries baryon number B we must look at the effects of changing B during 

nucleosynthesis. 

The transition rate for a nucleon N to convert to a nucleon of type N’ # N 

is comprised of two terms, 

IIN-N~ = r$+,t + r&t (3.1) 

where r;+N, is the transition rate due to weak interactions, e.g., e-p --t v,n, 

and I’;+,, is the induced hadronic transition rate. The latter is given by the 

rate of X decays per N multiplied by the average number of N -+ N’ transitions 

per X decay, denoted by IN-N’. In terms of the decay rate for X particles 

rx = (TX)-‘, the number densities of X particles and baryons scaled by the 

entropy density, yx s n~/s and ye G rig/s,, and the fraction of baryons that are 

protons z,, and neutrons z,, the rates I$-tN, are 

I- p-+n 
rxYx u 

= - 

=pYB 
p--m 

rH - rXyx 
n-+p 

1 
XnYB 

n-p. 

(3.2) 

The average number of N -+ N’ transitions is conveniently split into two 



factors, 

NN+N* = ~&if&W? 
I 

(3.3) 

where the sum is over the hadronic species that may be produced per X decay. 

The first factor Pxi is the average number of species i in the final state from 

one X decay. This depends on branching ratios for various decay modes of X, 

fragmentation of partons into jets and the mass of the X particle, mu. The 

second factor fLN, is the probability that hadron species i induces a transition 

N -+ N’. This is strongly dependent on the environment of the decay, primarily 

because fkN, depends on nucleon number densities. 

The transition probability f&, , can be expressed as the ratio of the absorp- 

tion rate for iN + N’ + . . . compared to the sum of the i decay rate rL and the 

total absorption rate I’:: 

The rate for strong interactions of meson i and nucleon N from the background 

medium is 

r&,, = 9.5-10' s*(T) y& t1 zev,' XN 
b@)hN' sec-' 

1 mb (3.5) 

where ZN is the density ratio of target nucleon N to the baryon density, s,(T) 

ranges between l-2.75 to account for the change in ng/n-, as e+e- annihilation 

proceeds, and (op) is the thermally averaged strong interaction cross section 

times velocity. We have suggested in Section 1, and we describe in more detail 

below, baryon anti-baryon pairs can be treated as mesons, so eqn. (3.5) is 

applicable to the case where i = nii, pp as well. 
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As the typical value for strong interaction cross sections is on the order of 1 

mb, from eqns. (3.4) and (3.5) we see that two types of hadronic particles have 

a chance of modifying nucleosynthesis. The first type are the long lived mesons, 

s*, K* and KL, which have lifetimes of order 10e8 sec. For temperatures 

greater than about 1 MeV, the strong interaction rate is competitive, or at least 

non-negligible, compared to the decay rate. These long-lived mesons therefore 

may affect the neutron-proton ratio at the time (and just after) it is being 6xed 

by weak interactions. The second type of particle is nucleons and antinucleons. 

Throughout most of the range of temperatures considered here, neutrons and 

antineutrons have lifetimes much longer than their interaction times. Of course 

protons and antiprotons are stable so their interactions are always important 

throughout nucleosynthesis. 

In order to evaluate the thermally averaged cross sections, we need to know 

the initial state of the hadron. For the most part, the particles we are interested 

in thermalize, i.e., they reach kinetic equilibrium with the medium before they 

interact with baryons in the medium. Thermalization proceeds via scattering 

with electrons, positrons, and photons in the medium. We leave a detailed dis- 

cussion of thermalization times to the Appendix but summarize our conclusions 

here. 

We begin with the charged mesons. Anticipating the results of Section 4, 

the charged mesons are important only for T 2 m,. In general, cross sections 

with electrons are larger than photon cross sections by a factor of (mi/T)‘, 

where mi is the hadron msss. Consequently, as long es e+e- are sufficiently 

abundant, that is, until T 2 O.lm,, the Coulomb cross section dominates the 
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thermalization rate. In the Appendix, we show that the thermalization time 

for charged particles due to Coulomb scattering off of a relativistic e+e- gas is 

r - 10-l’ (E/GeV)(T/MeV)-r set, where E is the initial energy of the hadron. 

Clearly, charged mesons thermalize since this time is much less than a hadronic 

interaction time which is always 2 10e8 sec. 

For (anti)protons, temperatures below 0.1 m. are also relevant. Even for tem- 

peratures equivalent to times - 10’ set, (anti)protons are stopped by Compton 

scattering off of photons before they interact hadronically. Throughout the full 

range of temperatures, for processes involving (anti)protons, we assume that they 

are in kinetic equilibrium. 

The stopping power for (anti)neutrons scattering with electrons or photons 

is suppressed by - Ta/mi relative to that for charged particles. Electron scat- 

tering is adequate to thermalize them as long as T 2 0.1 MeV. Unlike protons, 

neutrons do not stop efficiently via photon scattering; so, below T - 0.1 MeV, 

(anti)neutrons do not scatter except off of free nucleons and nuclear material. 

Thii fact may have dramatic consequences at late times when - l/4 of all baryons 

are locked into ‘He, so some of the stopping power is due to n’He or ii4He colli- 

sions. For neutrons with E 2 100 MeV and for all antineutrons, one may expect 

fission of ‘He nuclei because of these interactions, resulting in extra free neutrons. 

We have not carefully calculated this effect. For most of this paper, we assume 

(anti)neutrons from X decays are in kinetic equilibrium before we evaluate the 

N -+ N’ transition rate. In Section 6, we discuss how we expect our results to 

change if we include this effect. 

The only particle that never stops via electromagnetic interactions is the KL. 
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Therefore, in evaluating the strong interaction cross sections (up), we use kinetic 

equilibrium for all particles but KL, which we assume are relativistic with their 

inital energy distribution determined by fragmentation. 

We now turn to calculating f&,,. Since we are interested in temperatures less 

than a few MeV, we need only consider processes that are exothermic, except for 

KL’s. For our purposes, the main feature of low energy exothermic reactions is 

that up is nearly independent of p. This makes the thermal averaging particularly 

simple, (up) N up at threshold. Furthermore, at threshold there are only a few 

reactions to consider. In particular, we may drop K+ from our discussion since 

the reaction K+n -+ Kop has Q = 2.8 MeV. We cannot ignore K- because of 

the possibility of forming strange baryons, e.g., K-p + Aso. 

We collect in Table 1 numerical values for the cross sections entering into 

our evaluation of l?b,,, and I’:. Charged pion interactions with nucleons are 

exothermic at threshold for the processes m-p -+ nr”, n-y and n+n + PTO, PT. 

Using the results of Roper et al.” for hadronic charge exchange interactions, 

together with” 

p = u(r-p + nr”) 
0(x-p + fur+) 

= 1.52 

R = 47n -+ PU 
u(7~ + nn+) 

= 1.3, 
(3.6) 

and assuming that R N u(x-p -+ n7)/u(x+n + p7), we arrive at the first two 

rows in Table 1. 

The threshold cross sections for If- are estimated from the coupled channel 



analysis of Martin and Ross: 26 

@(K-p + C-r+) e 21 mb 

@(Kmp+C+n-)-9 mb 

@(K-p + C”?ro) N 11 mb 

@(K-p + Am’) u 4 mb 

pu(~-n --$ C-TO) u 20 mb 

pu(~-n -+ C’x-) = 20 mb 

@(K-n -+ AA-) u 20 mb. 

(3.7) 

The cross sections are typically larger than for the charged pion caee because 

the mass differences between the initial and final states in K-N interactions 

are larger than in lr*N interactions. In deriving these cross sections, we have 

ignored a small velocity dependence due to the coupling of channels with different 

kinematics. Also, we have not yet included the overall Coulomb enhancement in 

the K-p channels. We deal with the Coulomb factor momentarily. The cross 

sections in Table 1 for K- are determined by multiplying the results in eqn. (3.7) 

by the appropriate branching ratios for hyperon decays into n and p. l8 

The last meson on our list is KL. Since they do not thermalize, we are 

interested in kaon energies on the order of a few GeV, typical ofjet fragmentation. 

There is no convenient compilation of experimental data for KL beams interacting 

with nucleons, so we have estimated KLN cross sections from K-p, K-n, and 

K+p scattering in the few GeV region.a7 We assume that Kr. interacts half es 

K” and half as I?‘J and that K” scattering resembles If+ because of the strange 

quark while I@ resembles K- because of the anti-strange quark. In doing this 

18 



averaging we do not include elastic scattering. To get the charge exchange cross 

section, we observe that typically there is a 10% diffractive part to any strong 

interaction, which retains some knowledge of the initial state and therefore set 

the p ++ n cross sections at slightly less than half the total absorptive cross 

section. 

We next turn to the case of injected baryons. If the decaying particle carries 

no baryon number, then we expect equal numbers of protons and antiprotons and 

also of neutrons and antineutrons. We inject baryons in pairs and treat them 

as mesons. For example, a (pfi) ‘meson’ interacts with a neutron with a cross 

section u@ + n + . . .) and induces one n + p interaction. We denote the cross 

section by (up)g for the process (pp) + n -t p.. ., with the understanding that 

only the antibaryon interacts. The nucleon antinucleon cross sections are taken 

from Ref. [28], where pD scattering was studied. We note that there is some 

uncertainty here as the jjn cross section in deuterium need not be the same as 

for free neutrons, especially when the incident momenta are very low. We have 

also ignored charge exchange reactions such ae nii * pp which are much smaller 

than Nm and NR’ annihilations. At late times, antineutrons do not thermalize, 

so the use of threshold cross sections is incorrect; however, the uncertainty this 

introduces in our final results is small (see Section 6). 

Up until now we have ignored Coulomb corrections to the cross sections. 

When there are two oppositely charged particles in the initial state, the reaction 

rate is enhanced by the square of the wave function at the origin 

c2 = v[l _ e-“]-‘; r) = 2r(rZ’Zz 
” (3.8) 
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where v is the relative velocity and Zl, Z8 are the two charges. We average over 

thermal distributions to obtain C?(7), where 7 = 2xoZlZ8J;1’-iz?’ with reduced 

mass ~1. Although we have determined @(7) numerically we give its large and 

small 7 approximations: 

E8(7)=1+++$.. 7<<1 

=7 7>1. 
(3.9) 

These expressions for c8(7) are accurate to 20% if one makes the transition from 

small to large 7 at 7 = 2. In Table 1 we give the value of 7T1i2 for T in MeV. 

The resulting value of 68 is then used as a multiplicative factor in the relevant 

cross sections. 

The decay rates I’& enter into the expression for fkN,. We use the Particle 

Data Book values18 for P& = r,:‘, except for Kr. which has a multiplicative 

factor to account for its decaying in flight: I?2 = (mK/E)r;;i, where our model 

of jet fragmentation, discussed below, is used to determine the average kaon 

energy z. 

These entries of Table 1, together with the numerical values of the particle 

lifetimes (and factor for KL), zp, v and s are sufficient to determine fkN, using 

eqn. (3.4). To complete our evaluation of NN-N,, it remains to determine the 

average number of species i produced per X decay, Pxi. Each X decay produces 

a number of jets equal to the number of quarks or gluons. Particle multiplicities 

within a jet should be nearly independent of how the jet originates, so we use 

hadronic multiplicities measured in e+e- annihilation experiments. To get Pxi 

we take the average charged particle multiplicities for a given jet, multiply by 
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the number of jets and scale by the fraction of the average charge multiplicity 

carried by particle species i: 

Pxi N (w,) . Njet . ni/ (%A) (3.10) 

The general form of the perturbative calculation of the leading double log- 

arithms to the average jet charged particle multiplicity” fits well the average 

charge multiplicity in e+e- experiments from fi = 2 - 40 GeV. The low energy 

data together with the combined PETRA data are fit by3’ 

(n&) = no + a. exp(b. $og(s/Aa)) (3.11) 

where ne = 2.0 f 0.2, a = 0.027 f 0.01, b = 1.9 f 0.2 and A = 0.3 GeV. Since 

this is the result for two jets, we divide the total charged particle multiplicity by 

two. Furthermore, for convenience, we write +/A = 2Ejct/A. Our expression 

for the average charge multiplicity for one jet with energy Ejct is therefore 

(n,h(Ejet)) = 1 + 0.027/2 . exp(l.9. @lOg(Ejet/O.l5 GeV). (3.12) 

The energy of the jet depends on the final state of the X decay. If at the 

parton level, X decays into three particles, we assume that Ejct = Mx/3, and 

that N+ equals the number of quarks at the parton level (excluding spectators). 

The final components of Pxi are the fractions of the average charge multiplicity 

carried by pions, kaons and anti-baryons. Using the TPC results 31 at PEP 

with fi = 29 GeV, we show the fractions in the last column of Table 1. We 
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have assumed that the number of KL’S equals the number of K-‘s, and the 

number of g’s equals that of p’s. The fractions ni/ (n,h) are taken to be constants 

throughout the range of Ejct considered. 

We note some features of the particle fractions. First, baryons are much less 

numerous than mesons so even though the mesons may have smaller efficiencies 

for p -+ n reactions they are still competitive at T - 1 MeV. Second, in many 

of the reactions we consider, pions appear in the final state (e.g., K-n -+ Ax- 

with A -+ px-), however, we include in ni/ (n,~,) only the primary pions from 

X decays. As justification, we see that primary pions are - 10 times more 

numerous than kaons. Third, the values in Table 1 include decays of short lived 

particles. For example, npP/ (n,J includes p’s and p’s from A and A decays. 

Similarly nC-/ (n,A) includes x’s produced by KS decay but not any from KL 

or K- decay because the longer lived mesons interact in the detector before 

they decay. Conveniently, detector design makes a distinction between short and 

long lived that is compatible with our needs in considering the early Universe. 

Fourth, leading particle effects are not correctly included in the values of ni/ (n,h) 

in Table 1. In e+e- experiments, the quarks are produced proportional to the 

square of their charge, so u or c quark production is enhanced a factor of four 

times the d, 8 or b production. On the other hand, in X decays the branching 

ratios into various modes depend on details of the model. For example, suppose 

X decays primarily into a bottom quark. Then that b quark will inevitably decay 

weakly into a e quark which in turn decays into an s quark creating a kaon. The 

net result may be an enhancement in K production. 

The cross sections and multiplicities of Table 1 together with eqns. (3.2- 
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3.5) enable us to suitably modifiy the standard nucleosynthesis computer code to 

accommodate quasi-stable nonbaryonic X particles. It remains only to discuss 

how the equations change for baryonic X. 

Suppose that each X decay produces fp protons and fn neutrons. Then the 

baryon to entropy ratio changes according to 

tiB = (fp + fax YX. (3.13) 

When X decays before the deuterium bottleneck breaks, the neutron to proton 

ratio is altered unless m/f, is tuned to fR/fp = z./zp. The change in the neutron 

fraction due to direct injection of baryons is given by 

i: n = F[fnzp - fpZn]. (3.14) 

We note that if fp or f,, is negative (corresponding to net antibaryon injection), 

we decrease yB as per eqn. (3.13); however, the effect on zn is not determined 

by what is injected but by annihilation cross sections. For example, if the anni- 

hilation cross sections were isospin independent, then 5, = 2p = 0. We do not 

deal further with fp, fn < 0. 

Finally, besides modifying the baryon content of the Universe, X particles 

also change the energy density, pressure, and if charged, modify the electron 

chemical potential. When the X particles decay they add energy and hence 

entropy to the radiation fluid. For the most part we expect these effects to be 

small. Anticipating the results of Section 4, yx/y~ 2 lo-‘, thus for mx u 1 GeV 

we expect px/p, z lo-‘(1 MeV/T). None the less, we have included density, 



entropy generation, etc., in our numerical work and examined some peculiar cases 

where px/p., 2 1. 
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4. Results and applications 

4.1 RESULTS 

With fixed values of the standard BBN parameters ra and NY, our results 

depend on numerous parameters. We use the strong interaction cross sections 

and particle multiplicities of Table 1. The remaining parameters, in addition to 

YX, me: mx, B, Njet, Ejet, fpl fnt r, and the final value of the baryon to 

photon ratio q. It will sometimes be convenient to separate the bsryon number 

due to X from the baryon number contained in protons and neutrons before X 

decays. We let no denote the baryon to photon ratio of all baryons except X (or 

X decay products). 

In the limit that px < p7 (which we assume for the moment), the mass 

dependence of our result appears indirectly through E+. There are two places 

where E+ enters: as mentioned in Section 3, for KL decays there is a boost 

factor 7 = EK‘/rnK = Ejct/((n(Ejet)) mK). This is a minor effect. The more 

influential dependence on mx is through (n(E+)) directly, ss it scales the total 

number of particles of each species i in the final state of X decays. We define F, 

F = NjetB (n(Ejctl) 
2 (n(33 GeV))’ 

The value of F is unity when 

mx = 100 GeV Nj.tB = 2 
(4.2) 

Ejc+, = mx-3 cz 33 GeV . 

Then, for nonbaryonic X, the two free parameters are rx and the initial value 

of yxF, where the initial value is defined at the temperature T = IO” K = 8.6 
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MeV. The baryonic X decays have a more subtle scaling with rn~ because the 

evolution equations have a dependence on yxfs and yxf,, as well as on yxF. 

Nonbaryonic X 

By definition, X particles with zero baryon number require f,, = fp = 0. We 

begin the presentation of our results with Fig. 2, where n = 3. 10-l’. We show 

separately the limits on yxF from considering only one of ?y*, K-, KL, pp and 

nii injection, ss well as the final result for injecting all six species. One should 

note that except for the pp injection, the hadronic species act to increase the 4He 

abundance by converting more protons to neutrons than vice versa so our limit 

comes from requiring Y 5 0.26. For pi injection, the effect goes the other way. 

The neutron-to-proton ratio is reduced by pp + n + p.. . . The pp limits are 

derived from Y 2 0.22. The net effect of all species together is always to increase 

the 4He abundance. 

At the shorter rx, it is a combination of all of the species that gives the bound 

on yxF. The bounds are weakest there because of residual weak interactions, 

but at these lifetimes, mesons have their biggest effects because their interaction 

times are competitive with decay times. The baryon-sntibaryon injection is the 

dominant factor for longer lifetimes. The shape of the limit curve in the regime 

rx ‘- 1 - 100 set is determined by two competing effects. As rx increases, the 

mesons become less important while baryon-antibaryon injection becomes more 

efficient as a source of neutrons. As z. decreases due to neutron decay, the ratio 

of p + n to n + p reactions increases, resulting in more “He produced per X 

decay, and therefore a tighter limit on yxF. For the case of n = 3 + lo-lo, the 

meson effect is less important than the z, effect and the limit improves with r,y. 
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However, for n = 10Wg the mesons have a bigger initial effect and as a result the 

‘He limit gets slightly worse as rx increases from - 3 to - 100 set (see Fig. 4 

below). After 100 see, zn drops to zero and only n% injection matters. The limit 

from ‘He has a slight upturn at rx = 10’ sec. At these late times, not all neutrons 

injected end up in 4He because deuterium burning is not totally efficient. Also, 

we are approaching the time when neutrons decay before deuterium is formed. 

Next we look at how the injection of hadrons affects the abundances of D, 

3He and ‘Li. The limit on yxF from 4He is approximately 10-r’ over a wide 

range of lifetimes, so in Figs. 3a-c, we show with the solid line the light element 

abundances ss a function of rx for yxF = lo-“, r] = 3*10-r’, and fp = fn = 0. 

The factors controlling the 4He curve have already been discussed. The D, 3He 

and ‘Li curves are unaffected by X decays until rx N 100 sec. For rx < 100 set, 

all the induced neutrons are eventually incorporated into ‘He. Very few decays 

occur late, when extra free neutrons affect the other nuclear abundances. For 

rx = lo* - 10’ see, XD increases, since for later times deuterium burning is less 

efficient, and so a larger residue of the extra neutrons remains in D. After 10’ 

see, the injected neutrons are likely to decay before they form D, so XD drops. 

Very few neutrons from these late times find their way into 4He. 

The 3He abundance is linked to that of deuterium. For rx = 1Oa - lo3 see, 

3He increases with the higher rate of DD burning, but after lo4 see, DD burning 

is not as efficient and n3He -+ pT reactions decrease the amount of 3He. 

The effects for ‘He, D and 3He illustrated in Figs. 3a-b do not qualitatively 

depend on n as can be seen by comparing the solid lines (q = 3. 10-l’) with 

the dashed lines (n = lo-‘). The same cannot be said for ‘Li. For low n, we 



pointed out in Section 2 that ‘Li traces the tritium abundance, and therefore 

the deuterium abundance. We show this as the solid curve in Fig. 3c where 

r) = 3. lo-lo. For high r), the ‘Li comes predominantly from electron capture 

on ‘Be which happens very late. When there is an extra source of neutrons, 

the ‘Be may convert to ‘Li earlier via n’Be-+ p’Li, which is then destroyed by 

p7Li+4He4He. We can see this happening in the dashed curve of Fig. 3c for 

n = 10eg. As rx increases, the ‘Li curve drops as the ‘Be is eliminated, then 

grows again as direct production of ‘Li traces the D abundance. 

From Figs. 3a-c, we see that for rx > 100 see, D, 3He and ‘Li are much more 

sensitive than ‘He to injected hadrons. In fact, requiring XD+XSH~ 5 10m4 gives 

a much more stringent bound on yxF than does 4He. For r) = (3, 10) . lo-lo, 

the limits on yxF from D plus 3He and 4He are shown in Fig. 4. The solid curve 

is the limit for n = 3 + 10-l’. The limits from D plus 3He shown by the lower 

solid curve are more strict than necessary because even a marginal increase in 

XD + X*x= violates the observational limit. The D+3He curve for n = lo-’ in 

Fig. 4 at longer lifetimes is much less strict. Although the D and 3He abundances 

increase, they now must increase an order of magnitude before the observational 

bound on XD + XIH~ is violated. 

In the standard scenario, lo-’ is the upper limit on r) from considering the 

deuterium abundance (XD > lo-‘). With long lived X particles, the deuterium 

abundance increases, therefore, we can consider larger values of n,3a perhaps as 

large ss 2 * 10mg where Y = 0.26 in the standard model. For example, if rx = lo3 
/ 

see, q = 2 - lo-’ and yxF = 3. lo- ‘I, then Y N 0.260, XD N 1.8. 10m5 and 

X 8~~ E 6.4. lo-‘. As an added bonus, the ‘Li abundance is also acceptable, 
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XvLi u 8.6. lo-“. 

Baryonic X 

The situation changes slightly when X carries baryon number: fp, fn # 0. 

Precisely which unpaired baryon ultimately emerges depends on several effects, 

especially hadronization of the final state parton. It is reasonable to set fp = 

f. = 0.5, but we feel it is unreasonable to have f,, > fn or vice versa. Despite this 

prejudice, we consider several values of fp and fn, otherwise, we keep the same 

parameter choices as in eqn. (4.2). Since baryon number changes as X decays 

we distinguish the baryon number originating in ambient protons and neutrons 

from that originating in X decays: 

11 = 17O + 7.05 (fp + f”) yx (4.3) 

where no is the value of n if there were no X decay. In Fig. 5 we present limits 

on yx for no = lo-‘. The three curves (a) fn = 0, fp = 1 (dotted line) , (b) 

f,, = 0.5, fp = 0.5 (solid line), and (c) fn = 1, fp = 0 (dot-dashed line) arise 

from the limit Y 5 0.26. The lower branches to the solid curve represent the 

D+3He limits for case (b) where they improve on the ‘He limit. 

It is possible to understand the bounds in Fig. 5 by an appropriate resealing 

of the f,, = fn = 0 results. The change in “He abundance due to a small amount 

of X decay may be written 

AY = +$ [=4(% + fn) - (fp + f,)Y]. (4.4) 

The (fp + f,,) term is the dilution due to the increase in baryon number. The 

2c4(an+fn) term reflects the increase in 4He due to the direct injection of neutrons 
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(fn) and due to the production of neutrons via injected mesons and baryon- 

antibaryon pairs (a,). The ~4 parameter signifies that not every injected neutron 

ends up in ‘He, e.g., neutron decay, inefficient burning of deuterium, and induced 

n --f p reactions may prevent neutrons from being incorporated into 4He. We 

can use eqn. (4.4) along with our limits for nonbaryonic X to predict a limit for 

fp, fn # 0: 

(YX)MAX(TX> fwf”) = (YX)MAX(7X>0t0) ’ 2E4(a, + f;;:;fp + fn~Y. (4.5) 

The cleanest application of this relation is for rx E lo3 sets, where a, is the 

number of nii pairs per X decay and almost all neutrons are burned into 4He, 

so ~4 = 1. For the parameter choice of eqn. (4.2), we find a, = 0.38. Using our 

liiit value, Y = 0.26, the ratios of (yx)~~x for the various values of (fp, fn) 

should be 

(f,, = 1, f,, = 0) : (0.5,O.S) : (0,l) : (0,O) :: 1.52 : 0.51 : 0.30 : 1.0, (4.6) 

a result which is confirmed in Figs. 4 and 5. For larger rx, the scaling changes 

because e4 decreases (to - 0.5 at rx = lo4 set). For small rx, ~4 decreases 

slightly while the value of a, increases because of meson interactions. There is 

one more effect; for rx < 1 set, the limits on yx are so weak that a substantial 

incresse in baryon number occurs. This results in an increase in 4He just as in 

the standard nucleosynthesis scenario, so the fn + fp = 1 limits are all tighter at 

rx 2 0.2 set than for the fn = fp = 0 case with the same no. 

A similar resealing can be done for the bounds derived from D plus 3He for 

rx > 100 sec. For simplicity, let us ignore the 3He. The deuterium abundance 
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changes by 

AXD=% [ED(% + fn) - XD (fp - (fn + h)(~D + <4))] (4.7) 

where eD is the fraction of injected neutrons that end up in deuterium and 

ye = y~(l-Y) is the density of hydrogen. Conveniently, whenever the deuterium 

constraint is important, ED > XD, and the values of (yx)~~x derived from 

D+3He are nearly proportional to l/(a, + f”). 

For lifetimes rx s 100 set the only effect of fp, f,, # 0 is to change the value 

of n during the n and D burning phases. As seen in Fig. 3, extra neutrons 

injected early do not affect anything but 4He, so the only constraint here is that 

yx does not increase n so as to violate the usual nucleosynthesis constraints on 

deuterium. For ‘1” = 10eg this limit is indicated by the lower branch of the solid 

lime at (yx)~~x E 8 * lo- ” below rx E 0.3 sec. Actually, this limit is artificially 

strong because n = 10eg is already marginal with respect to XD 2 lo-‘. 

n, = 1 

Many cosmological models suggest that fl G P/Pcrit should equal unity. The 

standard BBN model cannot accommodate a value of f’l, = 1. Too much 4He 

is produced and not enough D. Nor is it possible to achieve fly = 1 in one of 

our models with f,, = fp = 0, since ‘He always increases. It is possible, however, 

in a model with baryonic X. Before nucleosynthesis, part of the baryon number 

is contained in protons and neutrons, part in X. To get acceptable abundances 

of light elements, we must push parameters to the limits of being reasonable. 

For example, a Hubble constant If = 50 km/sec/Mpc and n = 7. 10eg gives 
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JIB = 1. Choosing rx = lo3 set, N+tB = 1, mx = 3 GeV (and E+t = 1 GeV), 

fp = 1, fn = 0, rl o = 6.3. 1O-g and yx = 10 -lo, the light element abundances 

are Y u 0.250, Xsxe u 2.0 * lo- 5, XD E 7.2. low5 and XTL~ N 9.7. 10-l’. This 

is only one specific choice that gives acceptable values. The essential features 

are that fp is near unity, f. is near zero and mx is small so that there are few 

neutrons introduced, enough to increase D but not enough to increase 4He which 

is decreased by the dilution term in eqn. (4.4). 

Large PX 

Our analysis thus far has been based on n (or n”) at times just before nucle- 

osynthesis lying in the range allowed by the standard BBN model, then limiting 

values of yx. One may argue that we are prejudicing our results to small values 

of yx, and that a substantial departure from the standard BBN model is un- 

constrained. There are two types of extreme circumstances: for either baryonic 

or nonbaryonic X, the present value of r) results from an earlier large baryon 

number “diluted” by entropy producing X decays.’ The second possibility is for 

baryonic X only, where most of the present baryon number comes from the X 

decays themselves so n Z% ‘1”. We consider the two scenarios in turn. 

Whether or not X carries baryon number, the case where the baryon number 

is diluted to a large degree by X decays does not work for mx less than - 10’ 

GeV if X decays hadronically. This is because only a few neutrons may be 

injected without seriously modifying the light element abundances. From our 

results above we take the rather conservative limit nna < ng. The number 

of neutrons injected is nns = 0.0235 * (rich) . NjctB. nx. After the X’s decay, 

114 the temperature is TX - px , and r) - ns/Ti. Requiring nna < na is then 
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equivalent to requiring 

mX z 0.0235 * (‘kh) 

t) 
Njet B . TX . (4.8) 

So, for TX - 0.1 MeV, r] - 10mg, NjctB = 1 and taking into account the growth in 

multiplicity with mx, we find mx 2 lo7 GeV. For rx < 0.1 set, this constraint 

gets much weaker as X decays well before nucleosynthesis. For rx > lo4 set, 

the very large injection of photons (which must accompany a hadronic shower) 

causes considerable photofission and it seems unlikely that a large dilution factor 

is acceptable. 

We consider next the possibility that ng < nx but px < P,, so X carries 

essentially all of the baryon asymmetry, but there is little dilution. For rx < 0.1 

set, thii is certainly a viable alternative to the standard model because n/p 

is brought approximately to its equilibrium value by weak interactions. The 

problem with injecting later is that it is difficult to maintain the standard model 

value for n/p. For rx - 0.1 - 100 set and for q 5 10mg, it is possible to find 

a satisfactory value for the ‘He, 3He and D abundances, but only for unlikely 

parameter values chosen to keep the nil injection rate low. As we suggested 

earlier, fp = fn = 0.5 are plausible values, while an acceptable range of Y in 

this scenario requires tuning fp to be large and f. to be small. For example, to 

minimize nii injection, take mx = 10 GeV and N+B = 1. For rx = 10’ set and 

yx = 1.42. lo-” (n = lo-‘), we find that Y = 0.248 and XD + XSH~ = 6.7. lo-’ 

for fp = 0.9 and fn = 0.1. For longer lifetimes, the problem is not so much the 

production of ‘He, rather the overproductionof D. By rx = 200 see, for the same 



value of yx as in the example above, choosing fp = 0.927 and fn = 0.073 yields 

the minimum Y = 0.220, but XD + XSH~ = 1.4 * lo-‘. 

For larger values of n, specifically n = 7. 10eg, the question of consistency 

with the observed abundances is less straightforward. At short lifetimes, residual 

weak interactions and nii interactions make too many neutrons and overproduce 

‘He, just as in the standard model. For rx = lo- 100 set, acceptable values of Y 

are possible but with too little deuterium. Between lifetimes of a few hundred set 

and almost lo3 see, for fp > 0.9 and fn < 0.1 with fp + f,, = 1, we calculate that 

Y, XD and XSH~ are all in acceptable ranges. By rx = lo3 set, Y 2 0.220 gives 

XD 2 lo-‘. We conclude that it is possible to have GB = 1 with all baryons 

derived from X decays, for I-X of a few hundred set and fp nearly equal to unity. 

4.2 APPLICATIONS 

Our results are applicable to a wide variety of models. Unstable particles 

are likely to have decay modes with strongly interacting particles in the final 

state. We present limits on gravitinos, decaying photinos, and mirror quarks as 

examples of how our results might be used. 

Gravitinos 

Gravitinos in supergravity theories decay slowly via non-renormalizable grav- 

itational couplings, so they are natural candidates for the exotic X particle con- 

strained here. Numerous analyses of the decay e + 75 have appeared in the 

literature.s’g”2 We consider instead the channel”“2 6 -+ gi. A discussion 

of how our analysis differs from the recent work of Dominguez-Tenreiro 12 is 

described below. 
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Without inflation, the gravitino energy density may cause problems by either 

closing the universe or contributing too much to the expansion rate of the uni- 

verse during the time of nucleosynthesis. 33 An appealing theory for many other 

reasons, inflationary universe models solve this problem by diluting the number 

of gravitinos, however to account for the present value of 0, the reheating tem- 

perature TR must be higher than of order34 10” GeV in conventional theories 

of baryogenesis. The relative abundance of gravitinos before nucleosynthesis is 35 

y&3 = 3.34. lo- 14(10?~ev) * (l-O~O181n(10~~ev))~ (4.9) 

so the limit on TR yields yd ?. 3. 10-13. 

The reheating temperature determines the abundance of gravitinos, and there 

is a 5xed dependence of the lifetime on the mass. Consequently, our limits on 

yx F ss a function of rx can be translated to a limit of TR as a function of mu. 

For a lifetime range of lo-l-10” set, using the relation3’ rd = 2nAf$/(9m~) (in- 

cluding the nine channels open for gluino and photino final states), the applicable 

msss range is 2 f lo3 - 9 * 10’ GeV. Using F = 8/9. (n&(Ej&)) / (n,h(33 GeV)), 

a straightforward resealing of the results shown in Fig. 4 with n = lo-’ yields 

(yd)~~x between lo-l4 - 5. lo-” as indicated by the bold line in Fig. 6. The 

limit yd 2 3. lo-l3 may be satisfied only for a limited range of lifetimes, rd 2 0.4 

set (me 2 5. 10’ GeV). At rd = 0.1 set, values of TR 2 1.5 * 101’ GeV are con- 

sistent with (yd)~ax, leaving only a very narrow window of allowed reheating 

temperatures for gravitino masses below 10’ GeV. 

Also shown by solid lines in Fig. 6 are limits on yd derived by Dominguez- 

Tenreiro” and Juszkiewicz et 01.~‘~~ We note that the limit in Ref. 191 is from 
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photodissociation of deuterium assuming e + +y, while ours is from deuterium 

and 4He creation assuming 6 -t Gg. We have not included photodissociation 

in our calculations, but we see from Fig. 8 that it should be less important for 

rx < 10’ sec. In fact, this is to be expected since before 10’ set, photofission 

is suppressed because photons are absorbed by 77 pair production before they 

can cause photofission of D. Furthermore, any neutrons released by photofission 

may be recombined into D, as seen in Fig. 3. For rx - 10’ - 10’ see, photofis- 

sion of deuterium and deuterium formation as a result of nR injection may be 

competitive. la After 10’ see, the excess of deuterium through photodissociation 

a-10,12 of ‘He should dominate all processes. 

The Domingues-Tenreiro results are more directly comparable because the 

gluino channel is included. A numerical comparison of our result (bold line) 

with the result of Ref. [12] shows a large discrepancy throughout the range of 

lifetimes; however, our analyses differ in several important ways.38 The main 

difference in our conclusions srises from the treatment of particle multiplicities. 

In Ref. [12] the number of antinucleons per gravitino decay is fixed, independent 

of me, to be 0.2. For the range of mssses between 2 . lo3 - 9 . 10’ Gev, the 

number of antinucleons per gravitino decay in our analysis ranges between 4-19. 

A resealing of our result so that a constant 0.2 antinucleons are injected is shown 

by the dashed line in Fig. 6. Even with this resealing, for rx - 0.1 - 100 set, our 

limits differ by as much ss a factor of 30. The discrepancy is partly accounted 

for by our inclusion of mesons (see Fig. 2), and the use of different parameters 

in the standard BBN model. We use NV = 3 and Y 5 0.26, instead of NV = 2 

and Y 5 0.25. We are able to approximately reproduce the values of (yd)~~x in 



Ref. [12] at rx = 0.1 and 100 set by “turning off the mesons,” fixing the nucleon- 

antinucleon injection number at 0.2, and using the values Y 5 0.26 and N, = 2. 

However, at rx = 1 - 10 set our bound is still about a factor of 10 stronger. The 

difference cannot be accounted for by a slight difference in nucleon-antinucleon 

annihilation cross sections. If we used isospin independent cross sections as in 

Ref. 1121 our results change by less than 15% (see Sect. 6). The last difference 

is that Dominguez-Tenreiro has included effects due to photodissociation and 

annihilation of p, ii on 4He. However, these mechanisms are inoperative for rx 

ss short as l-10 seconds. We comment that even though we do not explicitly 

include dissociation and annihilation on 4He, our limits from deuterium are in 

approximate agreement with those of Ref. 1121. We take thii as an indication 

that these are not the dominant effects for lifetimes less than 10’ sec. 

Our last remark pertaining to gravitinos concerns the case when the gluino 

channel is kinematically closed. Even so, there should be about a 1% branching 

ratio where the photon in the 77 channel is virtual and decays into a quark- 

antiquark pair. Even with a 1% branching ratio, resealing our result in the 

regime 1 < rd < lo3 set yields a limit (yd)~~x 2 lo-“. By comparison, if 

the photinos resulting from gravitino decay have m;l = 100 GeV, then requiring 

their density to be less than closure density yields (y,+)~~x 5 lo-” as well,’ 

and the limits based on the gravitino energy density during nucleosynthesis are 

weaker by two to three orders of magnitude. 

Decaying photinos 

Conventional supersymmetric standard models conserve a reflection symme- 

try call i-parity, under which ordinary particles are even under reflection, and 



supersymmetric particles are odd under reflection. It can be shown that when 

baryon number and lepton number are conserved, the s-parity operator can be 

written ss 

j$ = (-l)as+L+3B (4.10) 

where S, I; and B are spin, lepton number and baryon number, respectively. 

When k-parity is a good symmetry, the lightest supersymmetric particle is sta- 

ble. We shall assume here that the photino is the lightest supersymmetric parti- 

cle. 

Models with k-parity violation allow the photino to decay through B or 

L violating processes. Experimental constraints on explicit L and B violating 

terms in the Lagrangian3’ and scalar neutrino vacuum expectation values ” have 

been studied in detail and shown to be unrestrictive on cosmological time scales. 

Cosmological bounds provide constraints on a new region of parameter space. lo 

To convert the results of Section 4.1 to the case of the photino, recall that 

the cosmological abundance of photinos is determined by the photino annihilation 

cross section. For t-channel scalar fermion exchange in photinophotino annihi- 

lation into two fermions, the relative abundance of photinos at temperatures of 

- 10 MeV is” 

yq nr 3.3.10-‘( loom~ev)4(~)3. 

for the common mass rnf of scalar and pseudoscalar particles i and massless 

fermions in the final state. Using eqn. (4.11), we can convert the maximum 

values of yxF in Fig. 4 into a msss versus lifetime plot for the photino. As an 



example, we suppose that 7 -P qpv is the dominant decay mode at the parton 

level. Such a final state is allowed by a lepton number violating term4a such 

aa w,,4.&. For this decay, Njct = 2 and we assume that B = 1. The mass 

versus lifetime for a decaying photino is shown in Fig. 7. We have taken the 

maximum value of yxF for n = (3, 10). lo-lo. By hypothesis, the photino is the 

lightest supersymmetric particle, so rnq < mi for all lifetimes. Lifetimes beyond 

2. lo3 set for rnf = 50 GeV, and beyond 2 set for rni = 250 GeV are ruled out 

for the full range of photino masses. The limits of Fig. 7 can be transfered to 

limits on parameters in the Lagrangian. For example, if the term involving C 

is responsible for photino decay, we exclude a region of C versus rns parameter 

space. Taking rni = 250 GeV and assuming Q = b in the final state, the exclusion 

of r=, > 2 set is equivalent to requiring C > 8.2. lo-*(10 GeV/m9)5/1. Values 

of C such that r+ > 10’ set are ruled out by photofission of D or 4He in Ref. 

[lo]. Similar limits apply for other possible decay mechanisms including those 

that violate baryon number. 

Models with &-parity violation so small as to be applicable on cosmological 

time scales are natural in models with intermediate scales, for example, some 

low energy superstring-inspired models. It has been proposed that small explicit 

i-parity violation may occur through higher dimension operators that conserve 

a discrete symmetry forbidding low dimension h-parity violating operators. 13 

Depending on the dimension of the operator and the scale of i-parity breaking, 

the photino lifetime ranges from very short to the age of the universe. With our 

results, we are in principle able to constrain the scale of k-parity violation ss 

a function of d, the dimension of the operator by which k-parity is violated. 
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In practice, counting decay modes and including all of the coupling constants 

properly is very model dependent. To give a sense of the types of bounds that 

one may find, consider the induced dimension-six operators of Ref. [13] that 

yield a decay time 

=f - lo-‘s( 1045eV)4( lo? I5 sec. 

By requiring C, 5 2 see, the limit on the intermediate scale M where i-parity 

is broken is M 5 3.8 * 10’ GeV(mT/lOO GeV)514 for rnf = 250 GeV. Even with 

r+ s 2. lo3 set, the limit on M, M s 2 * log GeV(m;1/100 GeV)514, is lower than 

typical values, M - 10” - 10”’ GeV,43 which are required in realistic models 

predicting the weak mixing angle. 

Mirror quarks 

Mirror quarks in certain grand unified theories have lifetimes on the order of 

seconds. A mirror quark family contains charge &l/3, f2/3 fermions with the 

same SU(2)w content as ordinary quarks, except with chiralities interchanged. 

The essential feature is that mirror quark electroweak representations permit a 

bare mass term between an ordinary quark doublet and a mirror quark doublet. 

In the 0(18) family unified model, l4 there are equal numbers of ordinary and 

mirror families, so in the absence of additional symmetries, all ordinary fermions 

gain large bare masses. A mirror parity is introduced underwhichordinary quarks 

are even, and mirror quarks are odd. This forbids bare masses, however a strictly 

conserved mirror parity introduces a new problem. The lightest mirror quark is a 

stable strongly interacting particle with a weak scale mass. Limits on the presence 
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of heavy strongly interacting particles in water 44 and in iron 45 effectively exclude 

the possibility. The solution to this problem is to ensure that mirror quarks decay 

to ordinary quarks through higher dimension operators. In a model without an 

intermediate scale, the only possibilities are dimension-five operators. In terms 

of the unification scale MGUT and the msss of the mirror quark mq, the order 

of magnitude of the lifetime is r~ = (M~v~/lCl~~ GeV)s/(mq/lOs GeV)3 sec. 

The relative abundance of mirror quarks yg at the time of nucleosynthesis 

is not a number that has been calculated. In the absense of a mirror quark 

w=etry, YQ/Y~ - lo-lo. This is well below the level of constraints imposed 

by our analysis. Realistically, a mirror quark asymmetry is expected. Recall that 

the ordinary quark asymmetry arises through bsryon nonconserving interactions, 

violations of C and CP, and a departure from thermal equilibrium. ” All of 

these ingredients are expected to be present in the mirror quark sector as well. 

Standard calculations of the baryon asymmetry in grand unified models depend 

on the imaginary part of products of Yukawa couplings. Since mirror quarks are 

heavier than ordinary quarks (else we would have seen them), it is plausible to 

assume that ye 2 y,, so that almost all baryons result from X decay. Taking 

mq = 100 GeV, f,, = f,, = 0.5 and no = 0, we find that ~CJ 2 0.1 sec. 
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5. Cold dark matter annihilation 

In thii section we consider the effects of hadronic particles that result from 

the annihilation of weakly interacting massive particles (WIMPS). We use the 

terminology WIMPS to distinguish them from other types of cold dark matter. 

There are a variety of astrophysical, cosmological, and particle physics arguments 

that lead us to believe that WIMPS are likely to be an important constituent of 

our Universe. 3’16’20’41 At first thought, WIMP annihilation would not seem to 

be important at nucleosynthesis since annihilations for heavy particles freeze out 

far above temperatures u 1 MeV. However, a small amount of annihilation still 

takes place, not enough to alter the abundance of WIMPS but still enough to af- 

fect nucleosynthesis. Therefore we present the annihilation rate. By multiplying 

this by the branching ratio to quarks to get jets of hadrons, the WIMP annihi- 

lation contribution to nucleosynthesis is introduced into our computer code. We 

examine its effects on light element abundances. 

The rate equation for the WIMP abundance” in terms of y G “W/S is 

!!!!= 
dt - (4 4YZ - Y:qh 

where yccl is the WIMP abundance if they were in thermal equilibrium, (ow) is 

the thermal averaged annihilation cross section, and s is the entropy. By the 

time of nucleosynthesis, y is essentially its final value, y,, and the production 

term w y& is totally neglible. The rate equation at this time is approximately 

dy - 5 - (up) sy&. 
dt (5.2) 

The final abundance of WIMPS is determined by the annihilation cross sec- 
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tion at the time the production term becomes unimportant, which we shall denote 

by the subscript F, for “freeze out”: 

where rnw is the WIMP mass, Mpl = 1.22 * 10” GeV, and we define b by 

s z b3T3 , gp by p = r2g,T4/30, and gr by b3 c 2s*g,/45. The N in equation 

(5.3) refers to a possible temperature dependence of the annihilation cross section 

near freeze out, (o/3) - TN. For many candidate WIMPS, N = 0, i.e., the 

annihilation cross section is constant, while for others, N = 1. A transition 

between 0 and 1 is also possible. We take N = 0 as a typical value. The constant 

AN has a value of AN = 1.0 f 0.2 which depends mainly upon when freezeout 

occurs with respect to the quark-hadron phase transition. ” Lastly, ZF is defined 

by ZF G mw/T~. For any model of interest, ZF N 20, with only a logarithmic 

dependence on mu, (up), etc. Since we are interested primarily in the range of 

masses mw - 5 - 10 GeV, this Sxes TF - 250 - 500 MeV and, in turn, b3 - 27. 

All told, this gives 

(44 Ym = 
10 (4 

~,MPI (bp)F’ 

The ratio (up) / (~0)~ is less than or equal to one during nucleosynthesis. Finally, 

we observe that the abundance of WIMPS is related to their contribution to the 

density of the universe by 

1 GeV 
y, = 1.9.10-s h*nW - 

mw 

where h is the Hubble constant in units of 100 km/sec/Mpc and fl, G PW/Pcrit 

is the fraction of critical density supplied by WIMPS. For the purpose of scaling 
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our results, we take l’l~h* = l/4. We then combine eqns. (5.2, 5.4, 5.5) to give 

dy, 
dt (5.6) 

This general expression is useful for a wide variety of cold dark matter models. 

Before calculating numerically with eqn. (5.6) we make some estimates of 

what we expect. It is convenient for our estimate to give the annihilation rate in 

terms of the variable z = mw/T: 

dy c Y2 -= -- 
dz a9 

(5.7) 

where C = (b3g8/(%g,))“* (up) mwMpl. With the same approximations as be- 

fore concerning ZF, A, N, etc., we find that the change in yw due to annihilation 

between temperatures Tl and T2 is 

Expressing y, in terms of the baryon abundance, y, = (Gwmg/flgmw) YJJ, we 

6nd that the number of annihilations per baryon is 

k!!!K_* TI - 7’a nw 
mg -. 

YE 4 fiB 

For illustrative purposes, we take Gw/Gs = 10 and mw = 5 GeV. At the time 

the neutron-proton ratio is being lixed, T - 0.5 MeV. Taking Tl - T2 N Tl, the 

temperature at nucleosynthesis, we find Ayw/y~ u 1.6. 10d3. In Section 4, we 

found that in order for decaying particles to influence the neutron-proton ratio, 
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we needed yx/yB 2 10-l, so we do not expect WIMP annihilation to greatly 

affect the helium abundance. The effects on the deuterium abundance are more 

dramatic simply because XI, is so small. At T - 0.03 MeV, Am/yg u 1 for 

XD z lo-‘. If there is a yield of one neutron per WIMP annihilation, the 

deuterium abundance may be increased dramatically. 

With this motivation, we use the annihilation rate of eqn. (5.6) as the injec- 

tion mechanism for hadronic matter in our modified nucleosynthesis code. We 

assume that annihilation proceeds via WW+ gij with a branching ratio B,. The 

(~q pair produces two jets, each of energy Ejct = mw, which are fragmented ac- 

cording to the algorithm in Section 3. We study a model where n = 4. lo-lo and 

mw = 5 GeV. The light element abundances are shown in Fig. 8 as a function 

of the injection parameter I, 

j& (%h(mW)) 25 GeVa 
(@)F (%h(5 GeVl) ma 

(5.10) 

The particle multiplicity (n,h(Ejrt)) is given in eqn. (3.12). As one can see 

in Fig. 8, the observed limits on light element abundances are transcended at 

I E 23 (‘He), I E 5.5 (Df3He). At an intermediate value, I E 15, the ‘Li bound 

is violated. 

Naively, I s 1, however there are several reasons why I may be larger. By 

slightly reducing mw , I increases; for example, the mass of a Dirac. neutrino that 

provides Clh* = l/4 is between 3 and 4 GeV.4”4s Uncertainties in determining 

the value of the Hubble constant4g may amount to a factor of two in I. Finally, 

our calculations have been done without accounting for free neutrons produced 

from neutron dissociation and antibaryon absorption on ‘He. A compensation 
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for the normalization of the number of free neutrons is to increase the efective 

value of I, perhaps as much as a factor of 2-4 at times relevant for determining 

the abundance of deuterium. Because of the uncertainty in the true value of I, we 

have foreborn any attempt to constrain various combinations of nucleosynthesis 

and WIMP dark matter parameters at this point. 

In addition to constraining models, it is possible that previously ruled out 

values of n are now acceptable. Specifically, the strongest constraints on high r) 

models come from an underproduction of D and and an overproduction of ‘Li 

through ‘Be. Both these problems are alleviated by the late injection of neutrons. 

To exhibit this effect, we show in Fig. 9 the light element abundances for I = 4 

as a function of n. The constraints on TV are relaxed. Now r] < 1.8. lo-’ (4He) 

and r] < 2.1. lo-’ (D). From 7Li, n < 1.1. lo-‘. These results are for only one 

value of I. Clearly, it is possible for slightly higher I that the strongest constraint 

on n arises from the 4He abundance. If this happens, nB as high as 0.3 is not 

ruled out if the neutron half-life is taken to be 10.2 min (1 u lower than the 

mean value) or the number of massless neutrinos is two. 5o We do not advocate 

thii approach ss it seems to require believing several unlikely things, however, it 

would have interesting ramifications for a theory of galaxy formation in which a 

mixture 51 of baryons and cold dark matter is invoked to explain observations of 

peculiar velocities, large scale structure (voids, etc.), and clustering of clusters of 

galaxies. 
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6. Discussion 

We have presented general constraints on the relative abundance of X psrti- 

cles that decay into hadrons, based upon the effects those hadrons have on the 

abundance of light elements produced in primordial nucleosynthesis. Our con- 

clusion is that for the lifetimes considered here, rx = 0.1 - 10’ set, the upper 

bounds on yx are nontrivial; (yx)~~x - lo-lo - lo-” for mx = 100 GeV. 

Turning the situation around, we have asked if hadronic decays of X particles 

may allow for a wider variation in the baryon to photon ratio than results from 

standard BBN. The answer is that n < 3.10-*’ is still prohibited, but n > lo-’ 

may be allowed since neutrons released from X decay may provide an additional 

source of deuterium. However, to allow for GB = 1 requires a fairly unnatural 

choice of parameters. 

The limits rely on a variety of parameters, all with uncertainties. The most 

obvious uncertainties are those associated with nucleosynthesis itself: the nuclear 

reaction rates, NY, rr/s and q, as well ss the numerical evaluation. The nuclear 

reaction rates come from a combination of experimental and theoretical cross sec- 

tions. Our version of the Wagoner computer program does not include the small 

corrections outlined by Dicus et al.‘* These corrections amount to a - 0.0025 

decrease in Y, and l-2% changes in the abundances for other light elements. The 

effect of decreasing NY by one in the standard model is to decrease Y by - 0.013 

and decreasing rIj2 by 0.1 min decreases Y by - 0.0014.53 Either of these two 

changes increases yx approximately according to eqn. (4.4). Finally, the limits 

on the primordial abundances in eqns. (2.1~ - d) have uncertainties associated 

with both the extrapolation of present observations to primordial limits, and with 
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the measurements themselves. 

The sensitivity of our results to the hadron-nucleon interaction cross sections 

depends on whether the hadron is a nucleon or meson. We have shown in Section 

4 that the neutron-antineutron pair injection and unpaired baryons are the most 

important effects for all but the shortest lifetimes. The entries in Table 1 are 

inferred from antiproton-deuterium scattering cross sections. We have compared 

our results using these values with those setting (up) = 1 mb, independent of 

isospin. The difference in limits from the (no) injection alone is less than 15% 

at short times, and by rx u 100 set, the results are identical. This is not 

surprising since there are so few neutrons after t N 100 set that antibaryons 

always react with protons, regardless of the cross section (see eqns. (3.4) and 

(3.5)). The absolute cross sections for meson-nucleon interactions are important 

for rx 5 10 see, because of the competition between reactions and meson decays. 

Low energy measurements of the charged meson-nucleon cross sections make our 

extrapolations to threshold fairly good. The absence of experimental data on low 

energy KL scattering makes our KL cross sections less reliable; however, KL’S 

cause at most half the increase in ‘He for rx 5 10 sec. 

For the multiplicities, we have used PETRA values for (r&h) as a function 

of energy. The error in b in eqn. (3.11) can give a factor of two in (n,J,) for 

Ejd = 33.3 GeV, and a factor of three for E+ = lo5 GeV. The value suggested 

by QCD, b = 1.77, is intermediate between the central experimental value and 

the lo lower value. The uncertainty in a in eqn. (3.11) should be correlated with 

that in b to maintain the correct charged particle multiplicity at low energies. 

We 6x (&h) for fi = 30 GeV at the value obtained by using the central values 
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of a = 0.027 and b = 1.9. Then, putting b = 1.7, a = 0.05 reproduces (r&h) 

for ,/Z = 30 GeV and differs only by a factor of 1.5 for Ejct = lo5 GeV. In 

any case, more precise values can be incorporated by resealing F. The same is 

true for the nii multiplicity when nii effects sre dominant. We have used the 

TPC experimental value for n,a/ (n&) which is - 20% lower than the PETRA 

value. se The TPC quoted errors on ni at fi = 29 GeV are - 10% . We do 

not expect the fractional multiplicities to be accurate for jet energies less than 5 

GeV. 

Throughout our analysis, we have left out three potentially important phys- 

ical effects: photofission, neutron induced fission and absorption of antiparticles 

by ‘He. From our discussion of the gravitino case, we expect photofission to be 

important only after 10’ sec. The net effect of the other two is to deplete the 

‘He abundance and make either D, 3He or free nucleons. Before lo3 set, most of 

these can be reprocessed back into ‘He. Later, “He formation is not so efficient, 

however, D formation is, as may be seen in Fig. 3. For lifetimes longer than 

a few hundred seconds, overproduction of D yields the strongest bounds, so by 

including dissociation of ‘He, our limits would be strengthened. 

For the case of baryonic X, we have made an implicit assumption that nuclear 

interactions of X particles are unimportant. For example, we might have worried 

about the possibility of forming (X’He) b ound states, but we did not. Baryonic 

X models may be divided into two classes: those with nuclear interactions and 

those without. An example of the first class would be mirror quarks, where the 

heavy quark is bound into a heavy baryon that has nuclear interactions at low 

energies. An example of the second class would be a photino which undergoes 
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baryon number violating decays. Strictly speaking, our results only apply to the 

second class of models. However, one expects qualitatively similar results for the 

Srst class: extra neutrons tend to enrich the universe with light elements. 

The limits on yx that we impose on the basis of hadronic injection have 

implications for a variety of exotic quasi-stable particles. Furthermore, specific 

cosmological models with cold dark matter must confront the issue of whether 

or not residual annihilations grossly change the light element abundances. This 

can work both ways, either by excluding a particular model or by opening up a 

new region of parameter space, for instance, larger values of q. 
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APPENDIX : Electromagnetic stopping of hadrons 

The purpose of this appendii is to present calculations of the stopping rate of 

hadrons due to scattering of electrons and photons. We are primarily interested in 

showing that hadrons produced in jets thermalize electromagnetically before they 

interact strongly. The hadrons are relativistic when produced, so we estimate the 

time to lose their relativistic energy. Also, the temperatures of interest are much 

less than the mass of the hadrons, so we must also estimate the time to lose 

their nonrelativistic energy. Our analysis applies to both charged particles and 

neutrals with a magnetic dipole moment. 

The rate of energy loss due to elastic scattering with particles in the medium 

is 

nj(G (1 F njf(kT)) A&j 2 vrel dn d3k’ (A.11 

where the sum is over particle species j in the medium, gj is the number of spin 

degrees of freedom for particle j and the initial and final occupation numbers 

are n(@ = (erlT f 1)-l for & the energy of particle. The upper signs refer 

to fermions, the lower to bosons. The relativistic generalization of the relative 

velocity of incident and target particles is v,,l = [($- ~j)” - (@x &)*]‘ls where 

@is the velocity of the incident particle and p; is the velocity of the target. The 

center of mass cross section between incident and target particle is dOj/dfl. 

The energy transfer in a collision is given by A&j = &jr - &j. It depends 

on the incoming particle energy E and mass M, the target particle momentum 

k’ and msss mj, and the center of mass scattering angles 0 and q5 through the 
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relation 

(7’ [(l - P’ Pa) (1 - P P’ CO8 4) + (P’ - Pa) (P cos 111 - P’l cos 01 

- p (p’ - /32) sin8 COST sin+}. 

(-4.2) 

Eqn. (6.2) is derived by taking the initial particles with velocities $, p; and 

the definition cos a = p’. &, performing a Lorentz transform A to the center 

of mass frame, scattering by angles 6’, 4 and then transforming by A-’ back 

to the rest frame of the medium. The Lorentz transformation may be broken 

up as A = AsAsAr; where Al is a boost by p to the incident particle’s rest 

frame, Az is a rotation by (I to put the particle momentum along the z axis, 

and As is a pure boost by p’ along the z axis to achieve the center of mass 

frame. With these definitions, COS$J = (P - Pjcoso)/vr,l and P’ = Prr&j(l - 

Ppj COB cr)/(M + 7&j(l- Ppj cos a)) where M is the mass of the incident particle 

and pz is the velocity of the target particle in the rest frame of the incident 

particle, & = V,,l/(l - flpj COS o). 

In what follows, we drop the final state occupation number (1 F njf). When 

the incident particle is relativistic, the final energy of the target particle is al- 

most always greater than T, so this is justified. When the incident particle is 

nonrelativistic, njf should be included. Omitting it leads to an error of at most 

order unity as long as the target particles are not strongly degenerate. 

For an unpolarized target medium hjfdfl does not depend on 4, so upon 

integration over dCl, the term proportional to cos CJ~ in eqn. (A.2) drops out. Eqn. 
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(A.l) may then be rewritten .es 

g = C $ / aj(C) &j Ii(k) k* dk; 
i 

Ii(k) = / Aj 2 sina sin0 da de; 
(-4.3) 

Aj = u,,[ {r* 7” (1 - P Pj coso) [(I - P’ Pz) (1 - P P’ cos1/)) 

- (p’ - pz) (p’ - p cosg CO8 I91 - 1). 

Eqn. (A.3) is completely general. We now apply it to some specific cases. We 

begin by noting that at early times (T 2 0.1 MeV), stopping is dominated by scat- 

tering from electrons and positrons rather than photons, because Coulomb cross 

sections are much larger than Compton cross sections. At later times, photons 

dominate because the number density of photons is much greater than the num- 

ber density of electrons, n./n., N q N few * 10-“. We start with the csse where 

the target particles are electrons. The cross section for elastic electron-hadron 

collisions may be written 54 in terms of the relativistic kinematic invariantss, t, u 

do a 

z= (8 - (M + m.,y.3 - (M - tq) i (1 - t;4m:) x 

{F,1 [(8 - “)2 + (4MZ - t) t] (-4.4) 

- & F,f, [(s - u)’ - (4M2 - t) (4m; + t)]} 

where the electromagnetic form factors are defined by 

Fe = Fl + & Fz, Fm * FI + Fz. 

At low energies (t = 0), Fl and Fz are the charge and anomalous magnetic dipole 
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moment of the hadron. For protons Fa = 1.79, for neutrons Fz = -1.91 and 

for r’s and K’s, Fz = 0. In terms of da/dt the center of mass cross section is 

duldfl = -(p2/r)do/dt where p is the center of mass momentum: p = P’r’M for 

hadron mass M. 

Eqns. (A.3) and (A.4) yield a complicated expression that is clearer with a 

few simplifying approximations. First, the maximum temperature for our pur- 

poses is about 1 MeV. Therefore, in the incident particles rest frame, the energy 

of the electron is of order 7. (1 MeV). Thii quantity is almost always less than M, 

so we may expand in terms of the parameter z E 7&/M. For charged particles 

the cross section reduces to 

du cc1 1 - $?z” (1 - CO8 0) 

ii&h 
(A.5a) 

and for neutrals 

du czaFj l+ ~~,a(l-cos0) 

xi,, = 2M' #(l - cos.9) . 
(A.5b) 

Second, we keep the leading terms for A in the relativistic and nonrelativistic 

regimes. When the incident particle is relativistic qa > 1, /3 N 1 and pr co8 $ u 1; 

80, 

A,.( c- 7’ (1 - pj cosa)' (1 - cos6'). 

In the nonrelativistic regime, p < 1, 7’ cz 1 + pa and 

(A.6a) 

A “,d N (Pa - P Pj COS 0) (pj - P CO8 a) (1 - Case) . (A.6b) 
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It is now straightforward to calculate I in the four cases of interest: 

I 
2a2A 

chsrr’ = -7 
(A.74 

I nc,rcl = -$a (1 + #/3) (A.7b) 

(A.7c) 

I nc,nrcl = 4:sp* (2pj + k). 
3 

The parameter A in the charged particle cases is of order one and is associated 

with the Coulomb divergence A = ln(Z/(l - cosB,i,,)) - 1, where B,,,is is de- 

termined by the plasma frequency of the medium. For the nonrelativistic cases 

we assumed p < pi and calculated the integrals only to leading order in p. If 

,B > @j, then the energy loss is even greater. 

Next, we use eqn. (A.7) to evaluate dE/dt for the various cases. For T 2 m, 

we neglect the electron mass and with gc = 4 we Snd 

dE 
+ eh,rel 

= $A@, (‘4.8) 

and a stopping time r to lose the relativistic energy 

3E 
rch,rel = ac-$AT~ 

N 1.2. lo-” (E/GeV) 
A (T/MeV)r sec. 

(A.9a) 

Even for 100 GeV hadrons the stopping time is much shorter than a typical 

hadronic interaction time, for which eqn. (3.5) gives ri,t 2 lo-* sec. Similarly, 
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for neutrals we find 

15M3 
rne~rel = 7*3$F;T4 = 

8.6. lo-r0 (M/GeV)3 

F! (T/MeV)4 sec. 
(A.Qb) 

Again, as long as T 2 m,, neutrons stop. In the nonrelativistic regime, the 

kinetic energy decays away exponentially with a decay time 

QM 
%h,nrel = 4ra2hTa = 

Q-10-” (M/GeV) 
A (T/MeV)r se’ 

p.9~) 

and 

15M3 
Tm*nre’ = 14r3a2F;T4 = 

4.3 * lo-lo (M/GeV)2 

Fi (T/MeV)4 8ec ’ 
(A.Qd) 

It should be clear that ss long as electrons are thermally abundant, charged 

hadrons and neutral spin l/2 baryons stop before they interact hadronically. As 

noted in Section 3, we do not expect KL to stop. At t = 0, both Fl and Fz 

vanish, so the leading term in the cross section (eqn. (A.4)) is proportional to 

F-f - t2 which leads to a stopping power - T’/M’ weaker than for neutrons and 

a stopping time r Z 10e5 8ec. 

Next, we turn to the case where T < m,. We anticipate that protons stop via 

Compton scattering and note that mesons decay before they interact. That leaves 

neutrons to be studied for stopping due to electron scattering when T < m.. In 

the relativistic regime we use eqn. (A.‘Ib), but drop the @j/3 term. The stopping 

power of neutrons is then 

dE -= 3m2F~E2 
dt M4 Pe (A.lO) 

where pe = 4(meT/2?r)3/2m,exp(-me/T) is the mass density of electrons and 
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positrons. Defining z s me/T, the stopping time for relativistic neutrons is 

r cz 1.8.10-s z312 ez sec. (A.ll) 

Neutrons stop before interacting hadronically with the medium when rI’i& u 1, 

where l’id is given in eqn. (3.5). Using (o/Y) = 40 mb, r] = 5 * lo-“, 8, = 1 in 

eqn. (3.5), we find the electronic stopping is efficient if 4.5. 10-2z-3/2ez < 1. For 

z > 5.8 (T 5 0.088 MeV = 10’ K) relativisitic neutrons do not stop by electron 

scattering. Rather, they stop by colliding with nuclei in the medium. Because 

of the exponential drop in electron number with temperature, this result is fairly 

insensitive to the uncertainties in the calculation. Once the neutrons become 

nonrelativistic, we must repeat the calculation using eqn. (A.7d). The cross over 

point where NC scattering is inefficient occurs at about the same point as for 

relativistic neutrons. 

To be complete in our discussion of neutrons stopping at low T, we should 

consider n-y scattering. The cross section for ny scattering55 is 

du -= 
dfl 

sin’ 8) (A.12) 

where here & is the photon energy. This cross section is smaller by - T1/M2 

than tie scattering so the stopping power is down by - 10-s at T - 0.1 MeV. 

Specifically, 

dE 640$(6) a2F;y2Ts 
dt= 3a M’ 

(A.13) 

where c is the Riemann zeta function. Eqn. (A.13) gives a stopping time due to 
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photons, r-,, 

rv = 9.6.10-* (T/MeV)-’ sec. (A.14) 

Stopping due to photons becomes less important than nuclear interactions when 

r, 2 1 sec. Using eqn. (3.5) again, we find r-J?;at = 1.9 * 102(T/MeV)-3. By 

the time electron stopping is unimportant at T 2: 0.1 MeV, photon stopping is 

- 10T5 of nuclear stopping. 

The last case we look at is protons stopping due to Compton scattering at 

T 2 0.05 MeV. The pq low energy cross section is 

da7 2ff2 -=- 
dfl 3M2 

which gives 

dE -= 
64r3 a2y2 T4 -- 

dt 135 m2 

(A.15) 

VW, 

r = 7.0.10-lo (T/MeV)-’ sec. (A.17) 

Nuclear interactions become important when rI’int u 1.4 * 10-2(T/MeV)-1 is 

about 1, or at T = 1.4. low2 MeV. 

We capitulate our discussion of stopping powers. For the mesons, when- 

ever mesons may interact before decaying, they stop first. The only exception 

ia KL which interacts while it is relativistic. Protons stop very efficiently due 

to electrons or photons until T - 0.014 MeV. After that, nuclear stopping be- 

comes important. Neutrons stop via electon scattering until T - 0.09 MeV after 

which nuclear stopping dominates. Whenever nuclear stopping is important the 

possibility of creating free neutrons via hadronic collisions must be considered. 
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Table 1. Cross sections in mb for charge exchange and annihilation processes, 

parameters in the Coulomb corrections (eqns. (3.8)-(3.9)) and fraction of the 

charged particle multiplicity for pions, kaons and baryon antibaryon pairs. See 

text for references. 

Particle i (o/3)& w);” (4” (4; -jT@ 4 (WJ 

?r+ 1.7 0 0 0 0 0.4230 

x- 0 1.5 0 0 0.359 0.4230 

K- 26 31 34 14.5 0.585 0.0535 

KL 7 7 10 10 0 0.0535 

PF 28 0 0 37 0.704 0.0235 

nii 0 28 37 0 0 0.0235 
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FIGURES 

Figure 1: Standard model results for (o) ‘He, (b) 3He and D, and (c) ‘Li as a 

function of I], the present baryon to photon density ratio. 

Figure 2: Maximum values of yxF for q = 3 + 10-l’ and fP = fR = 0. The limits 

from just z*, K-, KL, pp or ng are shown separately. 

Figure 3: ‘He, 3He, D and ‘L’ b d I a un antes as a function of rx for yx fixed at 

10-12, r) = (3,10) . lo-lo, fP = f,, = 0 and F = 1. 

Figure 4: Maximum values of yxF for n = 3. lo-r0 (solid line) and t) = lo-’ 

(dashed line) with fr, = fn = 0. The limits come from both Y 5 0.26 and 

XD + X‘H. 5 10-d. 

Figure 5: Maximum values of yx for no = lo-‘, rn~ = 100 GeV, NjetB = 2 

and fP = 1, fn = 0 (dotted line), f,, = fa = 0.5 (solid line) and fP = 0, fn = 1 

(dot-dashed line), all coming from the limit Y < 0.26. The lower branches of the 

solid line rely on XD + Xa,.rC < lo-‘. 

Figure 6: Maximum gravitino abundance yd versus lifetime rd. The bold line 

shows our result, and the other solid lines indicate the limits from Dominguez- 

Tenreiro” and the photofission results of Juszkiewicz et al.’ The dotted line 

is a resealing of our limits to compare with the Dominguez-Tenreiro limits. See 

text for details about the resealing. 

Figure 7: Mass versus lifetime for a decaying photino when rni = 50, 100, 250 

GeV. 

Figure 8: The light element abundances sa a function of the injection parameter 

I for cold dark matter. Here n = 4 * lo-lo and mw = 5 GeV. 



Figure 9: The light element abundances &s a function of 0 for fixed I = 4 and 

rnw = 5 GeV. 
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